"ADVANCEMENTS IN MACHINE LEARNING: ALGORITHMS, APPLICATIONS, AND IMPLICATIONS"

Авторы

  • Gulnoza Khamidova Akramjon kizi Chief specialist of strategic development and international ratings department of Fergana State University

Аннотация

Machine learning has revolutionized various fields, offering unprecedented opportunities for automation, prediction, and data-driven decision-making. This thesis delves into the realm of machine learning, exploring the core algorithms, diverse applications, and the far-reaching implications of this technology. Through a systematic analysis of machine learning techniques, real-world use cases, and the ethical considerations surrounding the technology, this study aims to contribute to our understanding of the rapidly evolving landscape of machine learning.

Библиографические ссылки

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill.

Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (Vol. 1). MIT press Cambridge.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., & Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree search. Nature, 529(7587), 484-489.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2016). TensorFlow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., ... & Petersen, S. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529-533.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). "Why should I trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining (pp. 1135-1144).

Adya, A., Howell, J., Theimer, M., Bolosky, W. J., Douceur, J. R., & Theimer, M. (2002). Cooperative task management without manual stack management. ACM Transactions on Computer Systems (TOCS), 20(2), 115-150.

Jones, A., & Guttag, J. (1997). Experience with processes and monitors in Mesa. ACM Transactions on Programming Languages and Systems (TOPLAS), 19(4), 717-776.

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video classification with convolutional neural networks. In Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1725-1732).

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing adversarial examples. arXiv preprint arXiv:1412.6572.

Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic optimization. Journal of Machine Learning Research, 12(Jul), 2121-2159.

Van den Oord, A., Kalchbrenner, N., & Kavukcuoglu, K. (2016). Pixel recurrent neural networks. arXiv preprint arXiv:1601.06759.

Mnih, V., Heess, N., Graves, A., et al. (2016). Asynchronous methods for deep reinforcement learning. In International Conference on Machine Learning (ICML).

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature, 521(7553), 452-459.

Kohavi, R. (1995). A study of cross-validation and bootstrap for accuracy estimation and model selection. In International joint conference on artificial intelligence (Vol. 14, No. 2, pp. 1137-1143).

Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A. (2015). Going deeper with convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1-9).

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., ... & Zheng, X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems. Software available from tensorflow.org.

Загрузки

Опубликован

2023-11-06